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Transverse instability of counterpropagating waves in photorefractive media
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The transverse instability of counterpropagating waves in nonlinear media with a photorefractive or
Kerr-type nonlinearity is studied. The problem is formulated for a sluggish nonlinear medium that
responds much slower than the optical frequency. In this limit, a general dispersion relation, valid for
arbitrary longitudinal variation of the optical intensities, is obtained and solved numerically for several
representative cases. It is found that, while photorefractive media provide sufhcient nonlinear coupling
for the observation of transverse instabilities, such observations may be diScult due to the presence of
strong amplified incoherent scattering (fanning} in photorefractive media.

PACS number(s): 42.65.Jx, 42.65.Hw, 42.65.Vh

I. INTRODUCTION

Small-scale transverse instability of a single beam [1]or
two counterpropagating beams [2] in a Kerr-type non-
linear medium has been known in nonlinear optics for
some time. In more recent years a number of theoretical
treatments of the subject have appeared [3—7]. A linear
analysis shows that the instability manifests itself by the
generation of a pair of satellite beams traveling at small
angles +0, to the primary beams. The interference of the
primary and satellite beams results in a transverse inten-
sity modulation with the characteristic spatial scale
l, =2~/O, ko. This transverse modulation is now attract-
ing attention in connection with the formation of pat-
terns in nonlinear optical systems [8]. In the case of
counterpropagating beams the nonlinear stage of the in-
stability may, in some cases, result in the formation of
hexagonal or square patterns with the size of the patterns
being determined by the characteristic spatial scale l, of
the linear stage. Up to now patterns have been observed
in atomic vapors [9] and liquid crystals [10]. It has been
suggested [11]that photorefractive crystals may be a suit-
able choice for nonlinear medium since they exhibit high
nonlinearities and the value of nonlinear coupling in the
crystal can be easily varied by external means. However,
important differences between the Kerr and photorefrac-
tive nonlinearities warrant the separate analysis of trans-
verse instabilities of counterpropagating beams that is
presented in this paper.

For the case of a single beam propagating through a
nonlinear medium the onset of the instability corresponds
to the appearance of intensity modulation on its trans-
verse profile with the characteristic modulation period
considerably less than the diameter of the beam. As a re-
sult of the instability, the beam may break down into
several narrower beams (filaments) so it is sometimes re-
ferred to (especially in plasma physics) as the filamenta-
tion instability. A considerable difference in spatial scales
inherent to the problem makes plane-wave analysis a very
useful analytical tool in studying the initial stage of the
instability. Speaking in this language, a strong plane
wave Fo passing through a Kerr nonlinear medium turns
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FIG. 1. Geometry of the optical interaction. (a) Excitation
of satellite beams by a single primary beam. (b) Excitation of
pairs of satellite beams by counterpropagating primary beams.

out to be convectively unstable versus excitation of two
spatial sidebands F+,—two plane waves propagating
symmetrically at an angle 9 to the primary wave [Fig.
1(a)] [1]. The term "convective instability" means that if
small seed amplitudes of waves (Fourier harmonics) F+&
are present at the input to the nonlinear medium then
they will exponentially grow with distance at the expense
of energy supplied by the strong "pumping" wave Fo.
The output amplitudes of waves F+, are equal to their in-
put amplitudes multiplied by this exponential
amplification factor. Instability is possible for a range of
angles 0 between the wave vector ko of the strong plane
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wave and the wave vectors k+i of the sidebands and the
characteristic angle (corresponding to the largest
amplification) is given by the condition 0, ~ n 2 ~ Fo ~,
where n2 is the Kerr coeKcient of the medium.

Similarly, two strong plane waves Fp and Bp counter-
propagating in a Kerr medium turn out to be unstable
versus excitation of two pairs of waves: F+i and 8+, sit-
uated as shown in Fig. 1(b)] [2]. The characteristic angle
(9, between the interacting waves' wave vectors is deter-
mined by the expression given earlier. An important
difference between this and the previous case is that the
system is now absolutely unstable. The term "absolute
instability (oscillation)" refers to the situation when in
the framework of a system of equations linearized with
respect to the amplitudes of weak waves F+, and 8+,
these amplitudes exponentially grow in time provided the
intensities of strong pumping waves exceed certain
threshold values. Contrary to the case of one pumping
beam, the instability starts from any arbitrarily small
values of input or initial amplitudes of generated waves
and their time growth goes on indefinitely in the frame-
work of the linearized set of equations. Saturation of this
growth and steady state can be obtained only if depletion
of the pumping beams is taken into account. The final
output amplitudes of the generated waves are determined
not by their input or initial amplitudes but by how far the
intensities of the pumping waves are from their threshold
values.

It should be noted that in both cases the transverse in-
stability of beam(s) in Kerr-type media results in the
spontaneous appearance of a characteristic spatial scale
I 2'7T/0 kp in the transverse structure of the beams cor-
responding to generation of sidebands with either the
highest amplification coe%cient in the case of a single
pump or the lowest threshold of instability in the case of
counterpropagating pumps. The general nature of the in-
stability is preserved in photorefractive media, although
not the details of the instability threshold conditions, or
the structure of patterns that may form in the nonlinear
stage of the instability. This is due to several differences
between the photorefractive and Kerr-type nonlinearities.
In Kerr-type media the nonlinear part of the refractive
index n 2 is not (or is only weakly) dependent on the angle
9 between the interacting waves (see Fig. 1) or,
equivalently, on the wave vector ki =Hkp of the grating
written by the pumping waves with their sidebands (Fo
with F+, and Bo with B+,) and so the characteristic an-

gle 8, is the result of interplay between the Kerr non-
linearity and diffraction. The nonlinear coupling
coefficient (analog of nz) in photorefractive media is
strongly dependent on the value of k~ and so material
properties of the crystal must come into play, imposing
their own characteristic spatial scales. Furthermore, the
Kerr nonlinearity corresponds to a non11Ilear change of
phase (n z is purely real), whereas the photorefractive
nonlinearity is in general complex corresponding to both
amplitude and phase changes. The magnitude of the real
part of the coupling coefFicient can be enhanced by apply-
ing an external electric field to the photorefractive crys-
tal, but in general it is impossible to eliminate completely
the imaginary part. Also, the dependence of the real and

imaginary parts on the value of k~ is different. In addi-
tion, photorefractive media are characterized by strong
amplified incoherent scattering (fanning) that leads to a
dependence of the amplitudes of the primary beams on
the axial coordinate, even in the linear stage of the insta-
bility.

These effects are studied in Sec. II in the framework of
a general dispersion relation, valid for complex coupling
coeKcients and arbitrary position dependence of the pri-
mary beam amplitudes. In Sec. III several particular
cases of photorefractive media are discussed, and some
conclusions are drawn as to the suitability of photorefrac-
tive media for the observation of optical pattern forma-
tion.

Consider two strong plane waves Foexp(ikoz —i coot)
and Boexp( —ikoz —ingot) counterpropagating in a non-
linear medium. We will assume that these waves do not
interact directly with each other, i.e., the nonlinear medi-
um does not support reAection gratings. This is true in
Kerr media when reflection gratings are washed out by,
e.g. , diffusion. In photorefractive media both transmis-
sion and reAection gratings may be significant depending
on the geometry of the interacting beams with respect to
the crystallographic axes. By assuming that, for example,
the beams propagate in a plane whose normal lies along
the crystallographic c-axis reAection gratings may also be
neglected in photorefractive media. We further assume
that the medium is sluggish and responds only at frequen-
cies much lower than the optical frequency cop and the
characteristic propagation time i/c (i is the length of the
medium and c is the speed of light) is small compared to
its characteristic relaxation time r (for photorefractive
media the latter is of the order of seconds). Let us add a
small probe wave 6F, exp [ikoz + i ki ri i (co.o+—A )t]
(~ki &&ko, ~A~ &&coo) to this system. Interaction of
strong wave Fp with this probe results in a nonlinear
change in the refractive index of the medium proportion-
al to Fo5F*, exp( —ik~.ri+i A*t) plus its complex conju-
gate. The conjugate part supports 6F& whereas scatter-
ing of wave F, off the first part produces sideband wave
oF i exp[ikoz i ki ri i (co—o

—A )t—]. Similarly scatter-
ing of wave Bp off the grating results in the appearance of
waves &B+i [see Fig. 1(b)]. The full set of waves in the
linear approximation with respect to the amplitudes of
the sidebands is of the form

F(ri, z, t) =F0(z)[1+F+,exp(iki ri —i At )

+F,exp( —iki .ri+i A*t ) ]

Xexp(ikoz —i cgiot),

B (ri, z, t) =Bo(z)[1+B+,exp(i ki ri i At)—
+B,exp( iki ri+—i A*t )]

X exp( —ikoz —i coot) .

Evolution of these waves in photorefractive media is
governed by the equations
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In the case of q (z) =const Eq. (4) reduces to

(q+q ')+[(s/kdl) ' (s/kd—)]sin(kdl)sinh(sl)

(4)

with the boundary conditions F+&(z =0)=F &(0)=0,
8+&(z =l)=B &(l)=0, corresponding to an absolute in-
stability. Here q (z) = ~Bo(z) /Fo(z) ~, kd =k ~ /2ko, and
y»(k~, Q) is the material and frequency-shift-dependent
complex coupling coeflicient. Equations (2) also describe
sluggish Kerr media with the replacement

y»/(1+q)~2(coo/c)n~~Fo(z)
~

/(1 i Qr) —. (3)

Note that in Eqs. (1) and (2) we allow for coordinate
dependence of the pumping beams' amplitudes. This will
enable us to account for their depletion due to absorption
and possible nonlinear processes that are competing with
the one under discussion. Of primary concern in pho-
torefractive media is the so-called fanning —a broad-
angle incoherent light-induced scattering.

There are several differences between Eqs. (2) and those
describing the transverse instability of instantaneous
Kerr media [2]. The characteristic relaxation time of the
photorefractive medium is much longer than the elec-
tromagnetic propagation time through the medium, so
the time derivatives in the left-hand sides of Eqs. (2) are
neglected. A frequency shift between the pump beams
and the excited sidebands enters into Eqs. (2) through the
coupling constant y„&(kj,0) that is generally complex. In
instantaneous Kerr media the coupling constant is purely
real and independent of the frequency shift, which in-
stead enters explicitly into the left-hand sides of Eqs. (2).
Because of these differences the solutions of Eqs. (2) will
not be comparable with those for instantaneous Kerr
media except in the case when the coupling constant is
real and the instability in instantaneous Kerr media in
static, i.e., there is no frequency shift between the pri-
mary waves and the sidebands ( Q =0).

Despite the complex nature of the coupling coeNcient
Eqs, (2) are simpler than those for instantaneous Kerr
media for which no closed analytical expression for the
dispersion relation exists except for the case
[Fo(z),Bo(z)] =const. Equations (2) can be solved in
closed form for any dependence Fo(z), Bo(z) and any
value of y»(k~, Q) yielding the following dispersion rela-
tion for the threshold of the absolute instability:

+2cos(kdl)cosh(sl) =0 . (5)

The case of a sluggish Kerr medium is recovered from
Eq. (5) under the replacement (3). Equation (4) or (5) can
be solved for s or y„& as a function of kd not implying any
particular dependence y»(kd ). In general, the solutions
for y„& will be complex and there may be a frequency shift
between the primary and satellite beams. If attention is
restricted to the case of purely real y„& and no frequency
shift, then an equation formally identical to Eq. (5) de-
scribes the instability threshold of instantaneous Kerr
media, as has been shown in Refs. [4,5].

Equations (4) and (5) have an infinite number of solu-
tion branches. In the limiting case of kd )& ~y»~, Eq. (5)
gives

iy„,l =+[—lnq+i (2K+ i)vr]
where X is an arbitrary integer. Solutions of Eq. (5) for
several low-lying branches are presented in Fig. 2. Note
that the sign of arg(y„, ) is arbitrary, since if y„, is a solu-
tion of (4), then y„*& is also a solution. A direct compar-
ison of the threshold condition for photorefractive media
and instantaneous Kerr media may be made when the
solutions of Eq. (5) give purely real y» and the threshold
for instantaneous Kerr media corresponds to zero fre-
quency detuning. Thus the curves in Figs. 2(a) and 2(b)
for q =1 are identical to the corresponding curves given
in Refs. [3—7]. When comparing the graphs it should be
kept in mind that for q =1 Eq. (5) can be written as the
product of two terms [6]

[tan(kdl/2)tanh(sl /2) —(kd /s)]

X [tan(kd l /2)tanh(sl /2)+ (s/kd )]=0 (7)

leading to two solutions for each value of kdI. In Fig. 2
we depict only the lowest of the two solutions. For q&1
the curves in Fig. 2 differ from those in Refs. [4,5], which
allow for only static instabilities, whereas they appear
similar to the results shown in Ref. [7] for instantaneous
Kerr media with q&1, QWO. Note that for kdl small, y»
is purely real irrespective of the value of q, whereas for
large kdl only the case q = 1 results in real y„&. The value
of kdl at which y„& becomes complex decreases with in-
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III. PHOTOREFRACTIVE MEDIA

Optical beams propagating in photorefractive media
interact via the coupling coefficient

y, (ki, 0)= Ct)p
n,ff(ki)r, ff(ki)Esc(ki, Q) .

2c

creasing q such that the minimum value of ~y„il~ is at-
tained with y» real when q =10 and with y„& complex
when q =100.

The coupling coefficient is due to photoinduced charge
redistribution that results in a space-charge field that
modifies the index of refraction via the Pockels effect.
Here c is the speed of light in vacuum, the optical beams
are assumed to be extraordinary polarized such that
1/n, ff=cos (p)!no+sin (y)/rI, , y is the angle between
k J and the crystal c axis, r,z is the effective electro-optic
coefficient along k~, and Esc is the photoinduced space-
charge field along k~. The phase of y, is determined by
the space-charge field, which is given by [12]

E,„(k )i[E,(ki)+iEd;ff(ki)]
[E~,„(ki)+Ediff(ki) iEO—(ki) ]

—iQto[Ep(ki)+Ediff(ki) —iE, (ki)]

Eo(ki)= E,pp( ki) +Ep„( ki) .

The space-charge field is expressed in terms of a number
of characteristic fields: E,„=e&/e,ffki (e is electronic
charge, X is density of traps Beg ~l static ~l& t-static is the
dc dielectric tensor) is the limiting space charge field,

Ediff ks Tki /e (kii is Boltzmann's constant, T is abso-
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FIG. 2. Dispersion curves for q (z) =const: (a) focusing
branch with Re(y») & 0 and (b) defocusing branch with
Re(y„~) (0. The curves are labeled as i, q = 1; ii, q = 10; and iii,
q =100. , ~y„, ~;

———,argly„, ).

lute temperature) is the diffusion field, E„=y DX /p ki
(yD is the recombination rate of charge carriers, p is the
mobility) is the drift field, and E„which is due to the
combined effect of the photovoltaic field E, and an
externally applied field E, =E, ocos(g&) (E, „o is the
field applied along the c axis). A simple model is used for
the photovoltaic eff'ect such that E „=E„,ocos(y), where

E„„o(which is assumed to have no dependence on ki) is
the local part of the photovoltaic field directed along the
c axis [13]. In the presence of a frequency shift II be-
tween the interacting beams Esc is also dependent on the
characteristic material response time tp, which is inverse-

ly proportional to the optical intensity. The values of
these parameters may vary considerably between different
samples of any particular material. The values given in
Table I, which were used for numerical calculations, are
meant to be representative; see, e.g. , Ref. [14] for refer-
ences to the original literature.

The phase of pp depends on the relative magnitude of
the characteristic fields and the frequency shift between
the interacting waves. For 0,=0 and Ed&)&E EdN app' pv

(large ki limit), the charge transport is dift'usion dominat-
ed and y~, is mostly imaginary (BaTiO3 in Table I).
When E,„))E,„,E „))Ed;ff (small ki limit) the
charge transport is drift dominated and y, is mostly real
(LiNbO3 in Table I). The dependence of y, l on kdl is
shown in Fig. 3 for Q=O. In BaTi03 the space-charge
field has a broad maximum centered at k z where

Ed'ff ( k J ) =E „(k i ) . However, for i —1 cm the corre-
sponding value of kdl is several thousand, so the max-
imum is not visible in Fig. 3. For kdh-~, corresponding
to the minimum instability threshold, the magnitude and
phase of y„, are almost constant in BaTiO3 in the absence
of an applied field. In LiNbO& the imaginary part of y,
varies rapidly for kdh-~ and an applied field has very lit-
tle effect due to the strong photovoltaic field.

Comparing Figs. 2 and 3 we may reach the conclusion
that a modulational instability should be readily observ-
able in BaTiQ& with modest applied fields of say 100
V/cm, or in LiNbO3 with no applied field. However,
such a conclusion would be overly optimistic since we
have not yet accounted for the space variation of the
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TABLE I. Physical parameters of some photorefractive crystals.

Parameter

Refractive indices

dc dielectric constants (e/eo)

Electro-optic coefficients (pm/V)

Photovoltaic field (V/cm)
Trap density (m ')
Recombination rate (m'/s)
Mobility (m /V s)

BaTi03

n, =2.46
n, =2.40
e1 =4300.0
e& = 106.0

r13 = 19.5
r33 =97.0
r42 = 1640.0

E~, o= 10.0
%=4.0X 10

y =5.0x10-"
p=5.0X 10

LiNb03

2.34
2.24

44.0
29.0

8.6
30.8
28.0

1.0x10'
4.0X 10
5.0x10-"
8.0X 10

beam intensities due to optical losses. The intrinsic ab-
sorption in photorefractive media is strongly dependent
on the impurity doping level. We measured an intrinsic
absorption coefficient of a-2 cm in 0.5-cm-thick sam-
ples of BaTi03 and LiNb03 with what appeared to be
average dopant levels. These measurements were made
using ordinary polarized beams such that r,z was small
and there was only weak generation of fanning. Howev-
er, a much stronger loss mechanism exists in the light-
induced broad-angle fanning that is characteristic of pho-
torefractive media. Fanning results in very strong de-

40

30- 800 —2.25

8+0

10-/

400

—0.75

10 15 20

0

25 30

40 ! ! ! I ! ~ ! I 0.03
(b)

30—

20—

400 800
400 800

—0.0225

0.015 OQ

10—

/

0.0075

10
!

15

„I
20 25

0
30

FICx. 3. Photorefractive coupling constant with an applied
field: (a) BaTi03 (y=22', l =1 cm) and (b) LiNbO3 (y=0, l =1
cm). The curves are labeled with the value of the applied field
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pletion of the main beam that can be characterized phe-
nomenologically by an effective absorption coefficient a&.
Measurements in the same sample of BaTi03 using ex-
traordinary polarized beams which induce strong fanning
gave a total effective absorption of uT=a+cx&-9 cm
for Gaussian beams of —1 mm diameter. Measurements
in the LiNb03 sample show that the fanning continuous-
ly develops for several hours, leading eventually to virtu-
ally total depletion of the central portion of the incident
beam. The fanning could be significantly reduced by us-
ing narrower beams; however, observation of a transverse
instability implies that the beams have a finite width. An
interaction length of 1 cm with a beam diameter of 1 mm
gives about 20 fringes across the beam at kd l -m.

The quantitative effect of the optical losses on the in-
stability threshold is found by solving Eqs. (4) with

2(XT~q(z)=q(0)e . The dispersion curves for the boundary
conditions ~Fo(0)

~

= ~BO(l) ~, which were found to mini-
mize the threshold coupling, are shown in Fig. 4. The
minimum value of y„&l ~

is now —9 as compared to
—1.S without absorption. In addition, a number of addi-
tional branches with comparable

~ y„&l ~
but different

phases appear. For the focusing branches [Re(y„!))0]
and small kdl the instability threshold is achieved with
purely real y„&, whereas for large kd I the threshold occurs
for y„& complex, except for branch i which is qualitatively
different, being purely real everywhere except for a small
region 36~ kdl ~41 [15]. Apart from this small region
this branch is reminiscent of the case q =1 in Fig. 2,
which also has real y„,. This is somewhat surprising
since there are no solutions for q =const&1 that have
real y„& for all values of kdl. This may be related to the
choice of ~Fo(0)~ =~Bo(l)~ in Fig. 4, which, despite the
fact that q =q(z), mimics the q = 1 case as closely as pos-
sible. Branches ii —Uii are numbered so that the values of
kdl at which the solutions for the instability threshold
change from purely real to complex increase with in-
creasing branch index. These branches are somewhat
reminiscent of those shown in Fig. 2(a) with q

=const% 1.
For kdl small ~y„,l ~

is minimized with y„! real whereas
for kd 1 large ~y„!l ~

is minimized with y„!complex. At the
transitional value of kdl, the real and complex solution
branches cross resulting in a sharp peak in ~y„&I~.
Branches ii —ix also appear grouped together as in-
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tertwmed pairs. For q (z) =1 the dispersion relation fac-
tors into two terms [Eq. (7)j. Since in that case the two
terms both have y„& real, only the solution that minimizes
y„Il is shown in Figs. 2(a) and 2(b). In the more general

case of q =q(z) the dispersion relation is no longer fac-
orable, although the solution branches still appear in in-

tertwined pairs (this behavior is diFerent from that found
or q =const&i, where the solution branches do not ap-

pear in intertwined pairs). In the case of q =q (z) the in-
tertwined solutions do not have th 1e same value of
arg(y„I) and both solutions are consequently shown in
Fig. 4. Additional calculations, not shown in Fig. 4,
s ow that all the branches asymptote to a finite limit for
large kdh, although a simple analytical expression for the
limiting values corresponding to Eq. (6) is no longer
available.

All the branches shown in Fig. 4 can be accessed by the
photorefractive media since the phase of d d

, which is unconstrained. The dispersion curves of Fig.
4 are normalized by y„„as defined by Eq. (8), in Fig. 5.
The frequency shift 0 has been fixed such that the phase
o y„, is equal to the phase of y„~ and at each value of kd l
the branch which minimizes y„&/y, is chosen. Values
of the ordinate less than 1 in Fig. 5 imply that the thresh-

old condition has been exceeded and
' t b'1' '

, an lns a 1 ltles may be
observable.

Even accounting for optical losses it appears theoreti-
cally possible to observe transverse instabilities of coun-
terpropagating beams in photorefractive media. The in-
stability should be accessible with applied fields of several
hundred V/cm in BaTiO and without a 1' d fi ld

1 03 Additional calculations, not reported here, indi-
cate that the threshold should be several times lower still
for the same applied field if SBN:75 (Sr 8 Nb 0rp 75 ap l5 2O6)
substituted for BaTi03. The reason for the lower thresh-

' ~

old ill tllis case is tllat e3 ( E'3 is the 33 component of e„„,, )

is about 30 times larger in SBN:75 than in BaTi03 which
reduces E by a factor of 30 and greatly increases the
grating phase shift for the same applied field. It should
be mentioned that while a modulational instab'1' in one

o e appearance oftransverse dimension correspondin t th
ringes appears possible, it is unlikely that patterns with

hexagonal or other two-dimensional symmetries may be
observed in photorefractives. In orde t her o ave symmetric
interactions in the transverse plan 'tane i is necessary to
propagate along the symmetry axis of the crystal which
leads to very weak coupling, far below the threshold for
transverse instabilities.
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'

p 'on curves in the presence of optical losses for
a T l =9: (a) ~y„I and {b) argly„I). curves i uii correspond to-
focusing branches with Re(y„~) )0 while curves Uiii and ix cor-
respond to defocusing branches with .Re (y„&) & 0.

FIG. 5. NNormalized dispersion curves: (a) BaTiO3 and (b)
iNbO3. The curves are labeled with the value of the applied

BaTi03 since it is more than ten times below threshold. The
a rupt jumps in Oto are due to the minimum threshold solution
jumping between the different branches shown in Fig. 4.
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We remain pessimistic as to the likelihood of any such
observations in the transmission geometry studied here.
The photorefractive coupling coefficients are in principle
large enough for the observation of instabilities. Unfor-
tunately, strong photorefractive coupling is intimately
connected with strong fanning. The calculations report-
ed here account for fanning losses in the simplest possible
way, as an effective additional absorption. But the effect
of fanning may be even more deleterious. The fanning
light fills a broad angular region that may mask the oth-
erwise observable instability. In addition, when the fan-
ning is strong, as is the case under conditions favorable
for the observation of instabilities, the incident beam ac-
quires a distorted transverse profile and is no longer well
described by a plane-wave model. The instability thresh-
old may indeed be many times higher when the beams are
strongly distorted.

After completion of this work we became aware of the
recent observation of hexagonal patterns due to the for-
mation of reAection gratings in a photorefractive medium
[16]. Geometries in which refiection gratings are dom-
inant significntly improve the situation since they allow

narrow beams to be employed which greatly reduces the
level of fanning. %'e expect that general features of our
results will still be applicable to the reAection geometry,
although quantitative predictions of instability thresholds
would have to be recalculated. The most significant
difference being that the direct coupling between the
counterpropagating primary beams leads to a different
variation of the beam intensity ratio q (z) from that con-
sidered here.
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